Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300.209
Filtrar
1.
Cancer Res ; 84(7): 958-960, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558132

RESUMEN

The extracellular matrix (ECM) has always been studied in the context of the structural support it provides tissues. However, more recently, it has become clear that ECM proteins do more to regulate biological processes relevant to cancer progression: from activating complex signaling pathways to presenting soluble growth factors. In 2009, Ulrich and colleagues provided evidence that the physical properties of the ECM could also contribute to glioblastoma tumor cell proliferation and invasion using tunable hydrogels, emphasizing a role for tumor rigidity in central nervous system cancer progression. Here, we will discuss the results of this landmark article, as well as highlight other work that has shown the importance of tissue stiffness in glioblastoma and other tumor types in the tumor microenvironment. Finally, we will discuss how this research has led to the development of novel treatments for cancer that target tumor rigidity. See related article by Ulrich and colleagues, Cancer Res 2009;69:4167-74.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proliferación Celular , Hidrogeles/química , Microambiente Tumoral
2.
J Biochem Mol Toxicol ; 38(4): e23676, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561971

RESUMEN

Although the treatment of ovarian cancer has made great progress, there are still many patients who are not timely detected and given targeted therapy due to unknown pathogenesis. Recent studies have found that hsa_circ_0015326 is upregulated in ovarian cancer and is involved in the proliferation, invasion, and migration of ovarian cancer cells. However, whether hsa_circ_0015326 can be used as a new target of ovarian cancer needs further investigation. Therefore, the effect of hsa_circ_0015326 on epithelial ovarian cancer was investigated in this study. At first, si-hsa_circ_0015326 lentivirus was transfected into epithelial ovarian cancer cells. Then real-time fluorescence quantitative PCR (qRT-PCR) was used to detect hsa_circ_0015326 level. The proliferation of ovarian cancer cells was detected by CCK-8 assay. The horizontal and vertical migration abilities of the cells were detected by wound-healing assay and Transwell assay, respectively. Transwell assay was also used to determine the invasion rate. As for the apoptosis rate, it was assessed by flow cytometry. As a result, the expression level of hsa_circ_0015326 in A2780 and SKOV3 was found to be higher than that in IOSE-80. However, after transfecting si-hsa_circ_0015326 and si-NC into the cells, the proliferation, migration, and invasion abilities of A2780 and SKOV3 cells in the si-hsa_circ_0015326 group were significantly reduced in comparison to those in the si-NC and mock groups, while their apoptosis rates were elevated. Collectively, silencing hsa_circ_0015326 bears the capability of inhibiting the proliferation, migration, and invasion of ovarian cancer cells while increasing apoptosis rate. It can be concluded that hsa_circ_0015326 promotes the malignant biological activities of epithelial ovarian cancer cells.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , ARN/metabolismo , Carcinoma Epitelial de Ovario/genética , ARN Circular/genética , ARN Circular/metabolismo , Línea Celular Tumoral , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proliferación Celular , Apoptosis , MicroARNs/metabolismo , Movimiento Celular
3.
Ann Plast Surg ; 92(4S Suppl 2): S207-S209, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556675

RESUMEN

INTRODUCTION: Autologous fat grafting (AFG) is a common technique used to enhance aesthetic outcomes in postmastectomy breast reconstruction patients. Adipokines are hormones secreted by adipose tissue that play a critical role in regulating metabolic processes and the immune system. However, dysregulated adipokine secretion and signaling can contribute to the development and progression of cancer by promoting angiogenesis, altering the immune response, and inducing the epithelial mesenchymal transition. We aimed to assess how breast cancer cells behave in conditioned media derived from fat grafting lipoaspirates and gain a better understanding of the potential interactions that may occur within the tumor microenvironment. METHODS: Patients who were undergoing AFG as a part of breast reconstruction at NY-Presbyterian/Weill Cornell Medical Center between March 2021 and July 2023 were consented and enrolled in the study. This study was approved by the Weill Cornell Medicine Institutional Review Board (#20-10022850-14). Conditioned media is created using 20% of patient lipoaspirate secretome and 80% starving media. The growth of MCF-7, a human ER/PR+ breast cancer cell line, in conditioned media is assessed using CyQUANT. RESULTS: The breast cancer cells incubated in conditioned media displayed similar growth trends as those in complete media, which is enriched for cell growth (P > 0.05). MCF-7 cell behavior in conditioned media differed significantly from their proliferation patterns when serum starved in 100% starving media (P < 0.05). DISCUSSION: Our results suggest that there may be inherent factors within the lipoaspirate that may promote MCF-7 proliferation. One potential implication is that AFG used for breast reconstruction should be delayed until local-regional disease control has been established. In addition, based on the in vitro proliferation patterns of breast cancer cells in conditioned media, the safety profile of AFG may be enhanced if the procedure is performed after attaining negative margins and the completion breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/cirugía , Células MCF-7 , Medios de Cultivo Condicionados/farmacología , Mastectomía , Proliferación Celular , Tejido Adiposo/trasplante , Microambiente Tumoral
5.
BMC Oral Health ; 24(1): 407, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556862

RESUMEN

BACKGROUND: Dental pulp stem cells (DPSCs) are a kind of undifferentiated dental mesenchymal stem cells with strong self-renewal ability and multi-differentiation potential. This study aimed to investigate the regulatory functions of succinylation modification in DPSCs. METHODS: DPSCs were isolated from the dental pulp collected from healthy subjects, and then stem cell surface markers were identified using flow cytometry. The osteogenic differentiation ability of DPSCs was verified by alkaline phosphatase (ALP) and alizarin red staining methods, while adipogenic differentiation was detected by oil red O staining. Meanwhile, the mRNA of two desuccinylases (SIRT5 and SIRT7) and three succinylases (KAT2A, KAT3B, and CPT1A) in DPSCs before and after mineralization induction were detected using quantitative real-time PCR. The cell cycle was measured by flow cytometry, and the expression of bone-specific genes, including COL1a1 and Runx2 were evaluated by western blotting and were combined for the proliferation and differentiation of DPSCs. Co-immunoprecipitation (co-IP) and immunofluorescence were combined to verify the binding relationship between proteins. RESULTS: The specific markers of mesenchymal stem cells were highly expressed in DPSCs, while the osteogenic differentiation ability of isolated DPSCs was confirmed via ALP and alizarin red staining. Similarly, the oil red O staining also verified the adipogenic differentiation ability of DPSCs. The levels of KAT2A were found to be significantly upregulated in mineralization induction, which significantly decreased the ratio of G0/G1 phase and increased S phase cells; converse results regarding cell cycle distribution were obtained when KAT2A was inhibited. Moreover, overexpression of KAT2A promoted the differentiation of DPSCs, while its inhibition exerted the opposite effect. The elevated KAT2A was found to activate the Notch1 signaling pathway, which succinylated Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. The co-IP results showed that KAT2A and Notch1 were endogenously bound to each other, while inhibition of Notch1 reversed the effects of KAT2A overexpression on the DPSCs proliferation and differentiation. CONCLUSION: KAT2A interacted directly with Notch1, succinylating the Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. Similarly, KAT2A-mediated succinylation modification of Notch1 promotes the DPSCs proliferation and differentiation, suggesting that targeting KAT2A and Notch1 may contribute to tooth regeneration.


Asunto(s)
Antraquinonas , Compuestos Azo , Osteogénesis , Células Madre , Humanos , Osteogénesis/fisiología , Células Madre/metabolismo , Pulpa Dental , Proliferación Celular , Diferenciación Celular , Células Cultivadas , Histona Acetiltransferasas/metabolismo
6.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556880

RESUMEN

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Asunto(s)
Bombyx , Nosema , Animales , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiología , Perfilación de la Expresión Génica , Proliferación Celular , Lípidos , Bombyx/genética
7.
BMC Cancer ; 24(1): 400, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561726

RESUMEN

BACKGROUND: This study evaluated the clinical relevance of a set of five serum-derived circulating microRNAs (miRNAs) in colorectal cancer (CRC). Additionally, we investigated the role of miR-20a-5p released by exosomes derived from cancer-associated fibroblasts (CAFs) in the context of CRC. METHODS: The expression levels of five circulating serum-derived miRNAs (miR-20a-5p, miR-122-5p, miR-139-3p, miR-143-5p, and miR-193a-5p) were quantified by real-time quantitative PCR (RT-qPCR), and their associations with clinicopathological characteristics in CRC patients were assessed. The diagnostic accuracy of these miRNAs was determined through Receiver Operating Characteristic (ROC) curve analysis. CAFs and normal fibroblasts (NFs) were isolated from tissue samples, and subsequently, exosomes derived from these cells were isolated and meticulously characterized using electron microscopy and Western blotting. The cellular internalization of fluorescent-labeled exosomes was visualized by confocal microscopy. Gain- and loss-of-function experiments were conducted to elucidate the oncogenic role of miR-20a-5p transferred by exosomes derived from CAFs in CRC progression. The underlying mechanisms were uncovered through luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assays, as well as proliferation and migration assays. RESULTS: The expression levels of serum-derived circulating miR-20a-5p and miR-122-5p were significantly higher in CRC and were positively correlated with advanced stages of tumorigenesis and lymph node metastasis (LNM). In contrast, circulating miR-139-3p, miR-143-5p, and miR-193a-5p were down-regulated in CRC and associated with early tumorigenesis. Except for miR-139-3p, they showed a negative correlation with LNM status. Among the candidate miRNAs, significantly elevated levels of miR-20a-5p were observed in both cellular and exosomal fractions of CAFs. Our findings indicated that miR-20a-5p induces the expression of EMT markers, partly by targeting PTEN. Exosomal miR-20a secreted by CAFs emerged as a key factor enhancing the proliferation and migration of CRC cells. The inhibition of miR-20a impaired the proliferative and migratory potential of CAF-derived exosomes in SW480 CRC cells, suggesting that the oncogenic effects of CAF-derived exosomes are mediated through the exosomal transfer of miR-20a. Furthermore, exosomes originating from CAFs induced increased nuclear translocation of the NF-kB p65 transcription factor in SW480 CRC cells, leading to increased interleukin-6 (IL-6) production. CONCLUSIONS: We established a set of five circulating miRNAs as a non-invasive biomarker for CRC diagnosis. Additionally, our findings shed light on the intricate mechanisms underpinning the oncogenic impacts of CAF-derived exosomes and underscore the pivotal role of miR-20a-5p in CRC progression.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Exosomas , MicroARNs , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Exosomas/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Interleucina-6/genética , Interleucina-6/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
8.
Cell Death Dis ; 15(4): 242, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565547

RESUMEN

Endometrial cancer (EC) cells exhibit abnormal glucose metabolism, characterized by increased aerobic glycolysis and decreased oxidative phosphorylation. Targeting cellular glucose metabolism in these cells could be an effective therapeutic approach for EC. This study aimed to assess the roles of LIN28B, PCAT5, and IGF2BP3 in the glucose metabolism, proliferation, migration, and invasion of EC cells. LIN28B highly expressed in EC, binds and stabilizes PCAT5. PCAT5, overexpressed in EC, and its 1485-2288nt region can bind to the KH1-2 domain of IGF2BP3 to prevent MKRN2 from binding to the K294 ubiquitination site of IGF2BP3, thus stabilizing IGF2BP3. Finally, IGF2BP3 promotes the aerobic glycolysis, proliferation, migration and invasion of EC cells by stabilizing the key enzymes of glucose metabolism HK2 and PKM2. Taken together, our data reveal that the LIN28B/PCAT5/IGF2BP3 axis is critical for glucose reprogramming and malignant biological behavior in EC cells. Therefore, targeting this axis may contribute to the development of a novel therapeutic strategy for EC metabolism.


Asunto(s)
Neoplasias Endometriales , Glucólisis , Femenino , Humanos , Línea Celular Tumoral , Glucólisis/genética , Neoplasias Endometriales/genética , Fosforilación Oxidativa , Glucosa/metabolismo , Proliferación Celular/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Cell Biochem Funct ; 42(3): e3994, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566355

RESUMEN

This study aimed to investigate the expression pattern and mechanisms of Pyruvate Dehydrogenase Phosphatase Catalytic Subunit 1 (PDP1) in the progression of breast cancer (BC). PDP1, known for its involvement in cell energy metabolism, was found to be overexpressed in BC tissues. Notably, low PDP1 expression aligns with improved overall survival (OS) in BC patients. In this study, we found that PDP1 was overexpressed among BC tissues and low PDP1 expression showed a better prognosis for the patients with BC. PDP1 knockdown suppressed cell amplification and migration and triggered cell apoptosis in BC cells. In vivo assessments through a xenograft model unveiled the pivotal role and underlying mechanisms of PDP1 knockdown. RNA sequencing and kyoto encyclopedia of genes and genomes analysis of RNAs from PDP1 knockdown and normal MCF7 cells revealed 1440 differentially expressed genes, spotlighting the involvement of the JAK/STAT3 signaling pathway in BC progression. Western blot results implied that PDP1 knockdown led to a loss of p-STAT3, whereas overexpression of PDP1 induced the p-STAT3 expression. Cell counting kit-8 assay showed that PDP1 overexpression significantly raised MDA-MB-231 and MCF7 cell viability while STAT3 inhibitor S3I-201 recovered the cell growth to normal level. To summarize, PDP1 promotes the progression of BC through STAT3 pathway by regulating p-STAT3. The findings contribute to understanding the molecular mechanisms underlying BC progression, and opening avenues for targeted therapeutic approaches.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Secuencia de Bases , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células MCF-7 , Transducción de Señal , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
10.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568203

RESUMEN

Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.


Asunto(s)
Osmorregulación , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Presión Osmótica , Proliferación Celular , Glucosa
11.
Immun Inflamm Dis ; 12(4): e1243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577988

RESUMEN

OBJECTIVE: To explore the role of interleukin (IL)-17 in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and to investigate its possible mechanism on pulmonary artery smooth muscle cells (PASMCs). METHODS: Enzyme-linked immunosorbent assay (ELISA) were used to compare levels of serum IL-17 in patients with CTD-PAH and healthy controls (HCs). After treatment for 3 months, the serum IL-17 levels were tested in CTD-PAH. ELISA and immunohistochemistry were used to compare levels of serum IL-17 and numbers of pulmonary artery IL-17+ cells, respectively, in a rat model of monocrotaline-induced PAH and untreated rats. Proliferation, migration, and inflammatory factors expression of PASMCs were assessed after stimulation with different concentrations of IL-17 for various time periods. Proteins in the mitogen-activated protein kinase (MAPK) pathway were examined by western blot. RESULTS: Levels of IL-17 were upregulated in patients with CTD-PAH compared to HCs. After 3 months of treatment, serum IL-17 levels were downregulated with pulmonary artery pressure amelioration. Moreover, serum IL-17 levels and numbers of IL-17+ cells infiltrating lung arterioles were increased in PAH model rats. IL-17 could dose- and time-dependently promote proliferation and migration of PASMCs as well as time-dependently induce IL-6 and intercellular cell adhesion molecule-1 (ICAM-1) expression. The levels of MKK6 increased after IL-17 treatment. Inhibition of MAPK decreased proliferation of PASMCs. CONCLUSION: Levels of IL-17 may increase in CTD-PAH, and IL-17 promotes proliferation, migration, and secretion of IL-6 and ICAM in PASMCs, respectively, which likely involves the p-38 MAPK pathway.


Asunto(s)
Interleucina-17 , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratas , Proliferación Celular , Interleucina-17/metabolismo , Interleucina-17/farmacología , Interleucina-6/metabolismo , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo
12.
FASEB J ; 38(7): e23598, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581244

RESUMEN

The precise molecular mechanism behind fetal growth restriction (FGR) is still unclear, although there is a strong connection between placental dysfunction, inadequate trophoblast invasion, and its etiology and pathogenesis. As a new type of non-coding RNA, circRNA has been shown to play a crucial role in the development of FGR. This investigation identified the downregulation of hsa_circ_0034533 (circTHBS1) in FGR placentas through high-sequencing analysis and confirmed this finding in 25 clinical placenta samples using qRT-PCR. Subsequent in vitro functional assays demonstrated that silencing circTHBS1 inhibited trophoblast proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression and promoted apoptosis. Furthermore, when circTHBS1 was overexpressed, cell function experiments showed the opposite result. Analysis using fluorescence in situ hybridization revealed that circTHBS1 was primarily found in the cytoplasmic region. Through bioinformatics analysis, we anticipated the involvement of miR-136-3p and IGF2R in downstream processes, which was subsequently validated through qRT-PCR and dual-luciferase assays. Moreover, the inhibition of miR-136-3p or the overexpression of IGF2R partially reinstated proliferation, migration, and invasion abilities following the silencing of circTHBS1. In summary, the circTHBS1/miR-136-3p/IGF2R axis plays a crucial role in the progression and development of FGR, offering potential avenues for the exploration of biological indicators and treatment targets.


Asunto(s)
MicroARNs , Femenino , Humanos , Embarazo , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Retardo del Crecimiento Fetal/metabolismo , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
13.
Cell Mol Life Sci ; 81(1): 167, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581570

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence and mortality rates. NFKBIZ, a member of the nuclear factor kappa B inhibitory family, is closely related to tumor progression. However, the precise role of NFKBIZ in HCC remains unclear. To explore this, we conducted a series of experiments from clinic to cells. Western blot and qPCR revealed a significant downregulation of NFKBIZ in human HCC tissues. Clinical character analysis showed that the patients with lower NFKBIZ expression had poorer prognosis and higher clinical stage. By using CCK-8, wound healing, transwell invasion and migration assay, we discovered that NFKBIZ expression was reversely associated with the proliferation, invasion, and migration ability of HCC cells in vitro. Additionally, the results obtained from xenograft assay and lung metastasis models showed that NFKBIZ overexpression inhibited the growth and metastasis of HCC cells in vivo. Western blot and immunofluorescence assay further revealed that NFKBIZ mediated HCC cell growth and migration by regulating NFκB signaling transduction. Finally, flow cytometry, protein degradation assay and Co-immunoprecipitation indicated that TRIM16 can enhance NFKBIZ ubiquitination by direct interactions at its K48 site, which may thereby alleviate HCC cell apoptosis to induce the insensitivity to sorafenib. In conclusion, our study demonstrated that NFKBIZ regulated HCC tumorigenesis and metastasis by mediating NFκB signal transduction and TRIM16/NFKBIZ/NFκB axis may be the underlying mechanism of sorafenib insensitivity in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sorafenib/farmacología , Línea Celular Tumoral , Movimiento Celular , Transducción de Señal , Carcinogénesis/genética , Transformación Celular Neoplásica , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
14.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38583875

RESUMEN

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Asunto(s)
Adenocarcinoma , Hipertermia Inducida , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Células PC-3 , Especies Reactivas de Oxígeno/metabolismo , Microondas , Proteína p53 Supresora de Tumor/metabolismo , Hipertermia Inducida/métodos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Reparación del ADN , Apoptosis , Estrés Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , ADN/metabolismo , Línea Celular Tumoral , Proliferación Celular
15.
Clin Exp Pharmacol Physiol ; 51(5): e13860, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38584327

RESUMEN

Lung adenocarcinoma (LUAD) is a serious threat to public health and is accompanied by increased morbidity and mortality worldwide. Neuronal PAS domain protein2 (NPAS2) has been confirmed as an oncogene in LUAD; however, little is known about its molecular mechanism. Here, the expression level of NPAS2 was detected in LUAD cell lines and 16HBE cells. Gain- and loss-of-function experiments were performed. Cell Counting Kit-8, colony formation, flow cytometry, wound-healing and Transwell assays were conducted to assess cell proliferation, apoptosis, migration and invasion, respectively. Reprogramming of glucose metabolism was evaluated via oxygen consumption rate (OCR), complexes activities, lactic production and glucose consumption. The expression of critical proteins was examined by western blot. We demonstrated aberrant upregulation of NPAS2 and ß-arrestin-1 (ARRB1) in LUAD cell lines. ARRB1 was found to be a critical transcription factor of NPAS2 with binding sites within the promoter region of NPAS2, thereby causing its transcriptional activation. Functional experiments revealed that NPAS2 depletion significantly inhibited the malignant behaviours of A549 cells by suppressing cell proliferation, migration, invasion and epithelial-mesenchymal transition and promoting cell apoptosis. Meanwhile, NPAS2 depletion increased OCR and activities of complexes (I, II, III and V), and reduced lactic acid production and glucose uptake in A549 cells, indicating that NPAS2 depletion inhibited aerobic glycolysis, accompanied by reduced expression of glycolytic enzymes. However, the changes caused by NPAS2 knockdown were partly restored by ARRB1 overexpression. In conclusion, our study suggests that ARRB1 could transcriptionally activate NPAS2, facilitating malignant activities and glycolysis, and ultimately promoting the progression of LUAD, proving a novel therapeutic strategy for the treatment of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Metabolismo de los Hidratos de Carbono , Glucólisis/genética , Adenocarcinoma del Pulmón/genética , Proliferación Celular/genética , Glucosa , Neoplasias Pulmonares/genética , Movimiento Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , beta-Arrestina 1
16.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585654

RESUMEN

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Asunto(s)
Infecciones por Klebsiella , Pulmón , Humanos , Ratones , Animales , Pulmón/patología , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiología , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferación Celular , Infecciones por Klebsiella/microbiología , Ratones Endogámicos C57BL
17.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38587486

RESUMEN

ß-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.


Asunto(s)
COVID-19 , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil , Liposomas , Proteínas de Unión al ARN , SARS-CoV-2 , Humanos , Proliferación Celular , Análisis por Conglomerados , COVID-19/metabolismo , COVID-19/virología , Citoplasma , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil/metabolismo , Células HeLa , Liposomas/metabolismo , Orgánulos , Proteínas de Unión al ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo
18.
Cell Death Dis ; 15(4): 252, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589352

RESUMEN

Cutaneous squamous carcinoma is the second most common epithelial malignancy, associated with significant morbidity, mortality, and economic burden. However, the mechanisms underlying cSCC remain poorly understood. In this study, we identified TGM3 as a novel cSCC tumor suppressor that acts via the PI3K-AKT axis. RT-qPCR, IHC and western blotting were employed to assess TGM3 levels. TGM3-overexpression/knockdown cSCC cell lines were utilized to detect TGM3's impact on epithelial differentiation as well as tumor cell proliferation, migration, and invasion in vitro. Additionally, subcutaneous xenograft tumor models were employed to examine the effect of TGM3 knockdown on tumor growth in vivo. Finally, molecular and biochemical approaches were employed to gain insight into the tumor-suppressing mechanisms of TGM3. TGM3 expression was increased in well-differentiated cSCC tumors, whereas it was decreased in poor-differentiated cSCC tumors. Loss of TGM3 is associated with poor differentiation and a high recurrence rate in patients with cSCC. TGM3 exhibited tumor-suppressing activity by regulating cell proliferation, migration, and invasion both in vitro and in vivo. As a novel cSCC tumor differentiation marker, TGM3 expression was positively correlated with cell differentiation. In addition, our results demonstrated an interaction between TGM3 and KRT14 that aids in the degradation of KRT14. TGM3 deficiency disrupts keratinocytes differentiation, and ultimately leads to tumorigenesis. Furthermore, RNA-sequence analysis revealed that loss of TGM3 enhanced EMT via the PI3K-AKT signaling pathway. Deguelin, a PI3K-AKT inhibitor, blocked cSCC tumor growth induced by TGM3 knockdown in vivo. Taken together, TGM3 inhibits cSCC tumor growth via PI3K-AKT signaling, which could also serve as a tumor differentiation marker and a potential therapeutic target for cSCC. Proposed model depicted the mechanism by which TGM3 suppress cSCC development. TGM3 reduces the phosphorylation level of AKT and degrades KRT14. In the epithelial cell layer, TGM3 exhibits a characteristic pattern of increasing expression from bottom to top, while KRT14 and pAKT are the opposite. Loss of TGM3 leads to reduced degradation of KRT14 and activation of pAKT, disrupting keratinocyte differentiation, and eventually resulting in the occurrence of low-differentiated cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal , Proliferación Celular/genética , Diferenciación Celular , Antígenos de Diferenciación , Transglutaminasas/genética , Transglutaminasas/metabolismo , Línea Celular Tumoral
19.
Sci Rep ; 14(1): 8243, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589413

RESUMEN

The role of circular RNA (circRNAs) in hepatocellular carcinoma (HCC) has been extensively studied. Previous research has highlighted the regulatory role of circSNX6 in HCC cells and tissues. However, the precise mechanism underlying HCC progression still requires comprehensive investigation. The study initially utilized quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to assess circSNX6 expression levels in HCC cell lines and tissues. Subsequently, the stability of circRNA was evaluated through Ribonuclease R and actinomycin D treatment assays. The impact of circSNX6 knockdown on proliferation, migration, invasion, and angiogenesis abilities was determined using various assays including colony formation, Transwell culture system, tube formation assay, and cell counting kit (CCK)-8 assays. Additionally, RNA immunoprecipitation chip and dual-luciferase reporter assays were employed to investigate the interactions between circSNX6 and miR-383-5p. Finally, an HCC xenograft tumor model in mice was established to assess the in vivo expression of circSNX6 and its functional role in HCC. Our findings revealed an elevated circSNX6 expression in HCC tissues, which was correlated with poor patient prognosis. Knockdown of circSNX6 suppressed HCC cell growth, invasion, metastasis, and angiogenesis. The downregulation of miR-383-5p, a target of circSNX6, significantly attenuated the tumor-suppressive effects induced by circSNX6 knockdown. Moreover, circSNX6 was found to modulate VEGFA expression by targeting miR-383-5p. The inhibition of HCC cell proliferation by miR-383-5p could be partially reversed by overexpressing VEGFA. Silencing circSNX6 also suppressed tumor formation and the metastasis of HCC cells in a mouse model. In summary, our findings suggest that circSNX6 promotes cell proliferation, metastasis, and angiogenesis in HCC by regulating the miR-383-5p/VEGFA pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hepáticas/patología , 60489 , Línea Celular Tumoral , Transducción de Señal , ARN Circular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Sci Rep ; 14(1): 8170, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589441

RESUMEN

To compare visual and anatomical outcomes between peeling and embedding of epiretinal proliferation in patients with full-thickness macular holes (FTMH) with epiretinal proliferation (EP), this retrospective cohort study classified patients into two groups based on whether EP was completely peeled (peeling group, n = 25 eyes), or embedded into the hole (embedding group, n = 31 eyes) during surgery. Preoperative characteristics and postoperative outcomes, including best-corrected visual acuity and the length of the disrupted external limiting membrane and ellipsoid zone, were compared. Preoperative features including visual acuity and hole size did not differ between the two groups. All studied eyes achieved closure of the macular hole postoperatively. Visual acuity significantly improved at 3, 6, and 12 months postoperatively in both groups. The visual acuity 1-month after surgery was better in the embedding group than that in the peeling group (0.28 ± 0.29 vs. 0.50 ± 0.42 logarithm of the minimum angle of resolution, P = 0.016), although the difference was not noted after 3 months postoperatively. The embedding group showed shorter disruption of the external limiting membrane than the peeling group postoperatively (62.6 ± 40.2 µm vs. 326.2 ± 463.9 µm at postoperative 12 months, P = 0.045). In conclusion, the embedding technique during surgical repair of a FTMH with EP facilitates recovery of the outer foveal layers and promotes earlier restoration of visual function.


Asunto(s)
Membrana Epirretinal , Perforaciones de la Retina , Humanos , Perforaciones de la Retina/cirugía , Estudios Retrospectivos , Membrana Epirretinal/cirugía , Vitrectomía/métodos , Tomografía de Coherencia Óptica/métodos , Proliferación Celular , Membrana Basal/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...